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PREFACE 
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1.0 INTRODUCTION 

The aerodYl1amicist must rely on theoretical and experimental information from 
ground test facilities for prediction of full-scale flight behavior and, in the last few years, 

has become more concerned about the effects of wind-tunnel model support interference 

on test data. As the accuracy required of wind-tunnel data becomes more precise, the 
evaluation of model support interference effects becomes critical. To evaluate this 
interference, a research program was conducted at the Arnold Engineering Development 
Center (AEDC) von Karman Gas Dynamics Facility (VKF) in 1976. The purpose of that 

program was to evaluate sting interference effects at Mach number 3; the results are 
documented in Ref. 1. The support interference technology program was continued, and 
this report documents the work completed in 1977 and 1978. The general objective of 
the three-year technology program was to provide support interference information for 
planning and directing wind-tunnel tests for supersonic through hypersonic Mach 
numbers. Technology was developed in these programs for evaluating support effects on 
base pressure, surface pressure, static pitching moment, and dynamic derivatives for 
models with laminar, transitional, and turbulent boundary layers near the model base. 

The objective of the 1977 technology program was to investigate sting-length and 

sting-diameter effects on the base and surface pressures of a blunt, 6-deg cone with a 

sliced base. The tests supplied information pertinent to wind tunnel configurations with 
control surfaces in the model base region. Pressure data were obtained at Mach numbers 
(M) 2, 3, 5, and 8 over an angle-of-attack (a) range from 0 to 25 deg. Effective sting 

length was varied from 1 to 4 model diameters, and sting diameter was varied from 0.19 

to 0.5 model diameters. Steady-state, heat-transfer measurements were also made at M = 

3, 5, and 8 at a = 0 to determine the type of boundary layer existing over the sliced 

region. Heat-transfer measurements were compared with theoretical estimates for 

establishing the nature of the boundary layer. These tests were conducted May 25-26, 
1977 [AEDC-VKF Supersonic Wind Tunnel (A)] and June 2-3, 1977 [AEDC-VKF 
Hypersonic Wind Tunnel (B)]. 

The 1978 support interference technology program extended the 1976 work to 

include Mach numbers 2, 5, and 8. The objectives of the 1978 program were to define 
critical sting lengths for two reduced frequencies as determined by the measurement of 

dynamic stability derivatives, static pitching-moment, and base pressure for different 
boundary-layer conditions. Results were obtained for laminar, transitional, and turbulent 
boundary layers at the model base. (When "boundary-layer condition" is herein 
associated in the dynamic stability data, the term refers to the boundary-layer condition 
at the model base). The effects on the dynamic derivatives of splitter plates located 
behind the model were also investigated. Previous investigators have shown that adding a 
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splitter plate to the support strut behind the sting significantly smoothed and reduced the 
base pressure. Tests were conducted in Tunnels A and B on a blunt, 7-deg half-angle cone 

for a reduced frequency range from 0.002 to 0.007. The effective sting length was varied 

from 1 to 3.3 model diameters. Angles of attack ranged from -8 to 8 deg. The small 
amplitude (±l deg) forced-oscillation technique was used. The tests were conducted on 
February 22-23, 1978 (Tunnel B) and February 28-March 2, 1978 (Tunnel A). 

2.0 UPDATING REFERENCES AND STING CRITERIA 

The report on the 1976 program (Ref. 1) summarized the pertinent facts of 

available references (Refs. 2 through 35) on support interference. These references have 

been updated (Refs. 36 through 41) and are summarized in Appendix A. 

Reference 1 also presents a chart suggesting critical sting lengths for various 
configurations for the subsonic to hypersonic range of Mach numbers. The chart is based 

on the survey data and is intended to be a guide for selecting support stings and for 
evaluating existing data for support effects. The chart readily notes the scarcity of sting 
criteria. An updated version of the chart is presented in Appendix B. 

3.0 APPARATUS 

3.1 TEST FACILITIES 

Tunnels A and B (Fig. 1) are continuous-flow, closed-circuit, variable-density wind 

tunnels. Tunnel A has an automatically driven flexible-plate-type nozzle and a 40- by 

40-in. test section. The tunnel can be operated at Mach numbers from 1.5 to 6 at 
maximum stagnation pressures from 29 to 200 psia, respectively, and at stagnation 
temperatures as great as 750° R at Mach number 6. Minimum operating pressures range 
from about one-tenth to one-twentieth of the maximum at each Mach number. 

Tunnel B has a 50-in.-diam test section and two interchangeable axisymmetric 
contoured nozzles for providing Mach numbers of 6 and 8. The tunnel can be operated 
continuously over a range of pressure levels from 20 to 300 psi a at Mach number 6, and 
from 50 to 900 psia at Mach number 8. Stagnation temperatures sufficient to avoid air 
liquefaction (up to 1,350° R) in the test section are obtained through the use of a 

natural-gas-fired combustion heater. The entire tunnel (throat, nozzle, test section, and 
diffuser) is cooled by integral, extemal water jackets. Each tunnel has a model injection 

system that allows removal of the model from the test section while the tunnel remains 

in operation. A description of the tunnels may be found in Ref. 42. 

8 



AEDC-TR-79-89 

3.2 PRESSURE MODEL AND STING HARDWARE 

The stainless-steel model (Fig. 2) consisted of a blunt, 6-deg cone with two flat 

surfaces (a double slice) in the base region. Two nose configurations (RN /RB = 0.0025 
and 0.1) were tested. The nose portion was taken from a previous test model. The 

aft-nose portion of the model was designed and fabricated at AEDC-VKF and was 
instrumented with 22 surface pressure taps (Fig. 3a) in the sliced region and four base 

pressure taps (Fig. 3b) in the base plate. The model surface opposite the sliced region was 
instrumented with nine Gardon-type heat flux gages (Fig. 3c) for determining the type of 

boundary layer existing over the sliced region. The Stanton numbers determined from the 
heat gage outputs were compared with theoretical estimates for establishing the nature of 
the boundary layer. Photographs of the instrumentation are shown in Fig. 4. Trip rings 

(Fig. 5) were used to trip the boundary layer so that turbulent heating rates would exist 
over the sliced base region. Number 60 grit was used for M = 2 and 3 and number 36 grit 

for M = 5. Spheres 0.063 in. in diameter (K) were used at M = 8. Additional trips were 

used (see Fig. 5) during the heat-transfer tests. 

The basic sting consisted of a long slender sting (Fig. 6a) that had an effective sting 

length ratio (Ls/D) of 3.9 and a sting-to-model-diameter ratio (Ds/D) of 0.19. Effective 
sting length was varied by sliding either a 4- or 6-in.-diam flare along the sting; sting 

diameter was increased by installing a sleeve over the basic sting. Effective sting length 

ratios of 1.0, 2.0, 2.5, 3.0, 3.9, and 4.2 and sting-to-model-diameter ratios of 0.19, 0.35, 
and 0.50 were tested. Photographs of these sting configurations are presented in Figs. 6, 

7, and 8. Installation photographs are shown in Figs. 9, 10, and 11. Although the model 

was tested at 1> = 180 deg, the data and model sketches are presented for 1> = o. 

3.3 PITCH-DAMPING MODEL AND STING HARDWARE 

The stainless-steel model for the pitch-damping tests (Fig. 12) was a flat-base, 7-deg 
half-angle cone with a IS-percent bluntness ratio nose (RN /RB = 0.15). The moment 
reference point (also pivot axis location) was located at 60.9 percent of the model length 

aft of the nose. The model was balanced so that the center of gravity was located on the 
balance pivot axis. Trip rings (Fig. 13) were used to obtain transitional and turbulent 
boundary layers at the model base. 

The cross-flexure balance of the forced-oscillation mechanism (VKF-1.C) is 
supported by a long slender sting; this allows obtaining large effective sting lengths (Ls) 

and small effective sting diameters (Ds) to minimize sting interference effects. When 
mounted to the VKF-1.C test mechanism, the model had an effective sting length of 3.5 
model diameters and an effective sting-to-model-diameter ratio of 0.22. This sting 
configuration was used for the present test and also for the Ref. 1 tests. For the present 

9 



AEDC-TR-79-89 

interference study, the effective sting length was shortened by positioning a conical flare 
(Fig. 14) at 3.3, 2.5, 2.0, and 1.0 model diameters from the rear of the model base. The 
flare was mounted to the motor housing in such a manner that it did not touch the sting 
forward of the motor housing. This eliminated the chance that the flare would change 
the sting frequency characteristics or model tare damping. The splitter plates were 
attached to the flare (Figs. 14c, d, and e) and did not touch the sting. Plate details are 

shown in Fig. 15. 

3.4 PITCH/YAW DAMPING TEST MECHANISM 

The pitch/yaw damping test mechanism (VKF-1.C) (Figs. 16 and 17) utilizes a 
cross-flexure pivot, an electric shaker motor, and a one-component moment beam that is 
instrumented with strain gages to measure the forcing moment of the shaker motor. The 
motor is coupled to the moment beam by means of a connecting rod and flexural linkage 
which converts the translational force to a moment to oscillate the model at amplitudes 

of up to ±3 deg (depending on flexure balance) and at frequencies from 2 to 20 Hz. The 

cross flexures, which are instrumented to measure the pitch/yaw displacement, support 
the model loads and provide the restoring moment to cancel the inertia moment when 
the system is operating at its natural frequency. At present, there are five cross-flexure 

balances, each of which is composed of three beams. The beam thicknesses of the five 

balances are 0.08, 0.10,0.15,0.17, and 0.20 in. and the restoring moments produced are 
16.2, 29.9, 97.6, 138.0, and 224.6 in.-Ib/deg, respectively. 

Since the moment beam used to measure the forcing moment is not subject to the 
static loads, it can be made as sensitive as necessary for the dynamic measurements. 
Moment beams are available in AEDC-VKF to measure forcing moments up to ±4, ±8, 
±12, and ±20 in.-lb. 

A pneumatic and spring-operated locking device is provided to hold the model 
during injection into or retraction from the tunnel or during tunnel startup. The 

cross-flexure balance is supported by a 1. 76-in.-diam, water-cooled sting. The 29.9- and 
97.6-in.-lb/deg cross-flexure balances and the ±4- and ±8-in.-Ib moment beams were used 

in the present tests. 

3.5 INSTRUMENTATION 

3.5.1 Test Conditions 

Stilling chamber pressure is measured with a 15-, 60-, 150-, or 300-psid transducer in 
Tunnel A and with either a 200- or 1,000-psid transducer in Tunnel B. Both transducers 

are referenced to a near vacuum. Stilling chamber temperature is measured with 
copper-constantan thermocouples in Tunnel A and with Chromel®-Alumel® 
thermocouples in Tunnel B. 

10 
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3.5.2 Model Pressures 

The Tunnel A pressure system uses l5-psid transducers referenced either to a 

vacuum or to a variable reference pressure, with full-scale calibrated ranges of 1, 5, and 
15 psia. The Tunnel B pressure system is equipped with 1- and 15-psid transducers 

referenced to a near vacuum. The system automatically selects the transducers and the 

calibrated ranges for best precision for each pressure measurement. 

3.5.3 Thermopile Gardon Gages 

Steady-state heat-transfer-rate measurements were made with the nine thermopile 
Gardon gages (Refs. 42 and 43) shown in Fig. 18. These gages were designed, fabricated, 
and calibrated at AEDC-VKF. The Gardon gages are U.12:' in. in diameter. They have a 
constantan sensing foil nominally 2 mils thick mounted on a cylindrical copper heat sink. 

The thermopile rosette on the sensing foil was formed with use of a vacuum-depositing 
technique. The rosette consisted of alternating legs of antimony and bismuth. In this 
study, the output of the thermopile Gardon gage was nominally 1.0 mv/(Btu/ft2_sec) 

with a nominal operating temperature range from 60 to 300°F. (At higher temperatures 
the gage elements begin to separate or fail.) The thermocouple rosette is used to sense 

the temperature difference across the gage sensing foil; this temperature difference is 

essentially proportional to the heat flux imposed on the constantan foil. Gardon gage 
wall temperature measurements were made with iron-constantan thermocouples. 

3.5.4 Pitch-Damping 

The forced-oscillation instrumentation (Ref. 44) utilizes an electronic analog system 

with precision electronics. The instrumentation to control, monitor, and acquire data is 
contained in a portable console that interfaces easily with the instrumentation of the 

various tunnels. 

The control instrumentation provides a system to vary the oscillation amplitude of 

the model within the flexure limits. The amplitude is controlled by an electronic 
feedback loop that permits testing of both dynamically stable and unstable 
configurations. 

Data are normally obtained at or near the natural frequency of the model flexure 

system; however, the electronic resolvers permit data to be obtained off resonance. All 

gages are excited by d-c voltages, and outputs are increased to optimum values by d-c 

amplifiers. Typical balance outputs from an oscillating model are composed of oscillatory 
components COC) superimposed on static components (SC). These components are 
separated in the data system by bandpass and low-pass filters. The SC outputs are sent 
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directly to the tunnel scanner and computer, which calculate the static moment 

coefficients and sting deflections. The OC outputs are input to the resolver 
instrumentation and precise frequency-measuring instrumentation. The resolvers use very 
accurate analog electronic devices to process the OC signals and then to output the d-c 

voltages. The output d-c voltages are proportional to the amplitude squared and to the 
in-phase and quadrature sting components. The resolver and frequency outputs are read 

by the tunnel scanner and sent to the computer. The frequency instrument controls the 
length of the data interval in increments of from approximately 2 to 60 sec, during 
which time the scanner reads each input approximately 10 times per second. The average 
values of the reading are calculated by the computer, which then uses these average 
values to calculate the dynamic derivatives. The method used to reduce the data is 
described in Refs. 44 and 45. 

4.0 TEST DESCRIPTION 

4.1 TEST CONDITIONS 

Nominal tunnel conditions at which the tests were conducted are shown in Tables 

and 2. The test summaries are presented in Tables 3 through 8. 

4.2 TEST PROCEDURES 

4.2.1 General 

In Tunnels A and B, the model is mounted on a sting support mechanism in an 

installation tank directly underneath the tunnel test section. The tank is separated from 
the tunnel by a pair of fairing doors and a safety door. When closed, the fairing doors, 
except for a slot for the pitch sector, cover the opening to the tank, and the safety door 

seals the tunnel from the tank area. After the model is prepared for a data run, the 

personnel access door to the installation tank is closed, the tank is vented to the tunnel 
flow, the safety and fairing doors are opened, and the model is injected into the 

airstream. After data acquisition is completed, the model is retracted into the tank and 
the sequence is reversed; the tank is vented to atmosphere to allow access to the model 
in preparation for the next run. 

4.2.2 Steady-State, Heat-Transfer Data 

The steady-state, heat-transfer data were recorded only at a == O. Once the tunnel 

conditions were established, the model was injected into the airstream, the fairing doors 
were closed, and the data were recorded about every 2 sec for a period of generally 20 to 

30 sec. 
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4.2.3 Pressure Data 

Model attitude positioning was accomplished using the AEDC-VKF Model Attitude 

Control System (MACS). Model pitch requirements were entered into the controlling 

computer before the test. Once the tunnel conditions were established, the model was 

injected into the airstream and the fairing doors were closed. The pressures were allowed 
to stabilize; then the data acquisition switch was energized. After the pressures were read 

once, the MACS moved the model to the next condition in the a-matrix. When the next 
condition was reached, the pressures were again allowed to stabilize, and the data-taking 
sequence was repeated. This procedure was repeated until the a-matrix was completed. In 
Tunnel B, the 26 pressure gages were read in groups of 13 using a Scanivalve®. Pressure 

stabilization was required before each group was read. Stabilization times in Tunnel A 

lasted from 3 to 5 min, depending on the test conditions. In Tunnel B, the 

initial stabilization time was about 8 min. A delay of 70 sec between the two groups was 
built into the MACS. After the a-matrix was completed, the model was returned to a = 0 

by the MACS and retracted for a model change. 

4.2.4 Pitch-Damping Data 

Once the tunnel conditions were established, the model was injected into the 

airstream and the fairing doors were closed. Model attitude positioning was accomplished 
with the MACS. The forced-oscillation control system was used to oscillate the model at 
a constant amplitude of ±l deg. With model conditions set, the data acquisition switch 
was activated and data were recorded for 10 to 30 sec. This sequence was repeated for 

each desired attitude; then the model was retracted into the tank. Oscillation frequency 
was varied by changing either balance stiffness or model inertia. The reduced frequency 

parameter ranged from 0.0019 to 0.0068 radians. 

4.3 DATA REDUCTION 

4.3.1 Steady-State, Heat-Transfer Data 

Conventional methods (Ref. 43) were used to calculate heat flux rates from the 

data. This information was normalized in the form of Stanton numbers (referenced to the 

difference between tunnel stilling chamber temperature and model surface temperature). 

4.3.2 Pitch-Damping Data 

The resulting time-oriented displacement, moment beam, and sting-gage signals 
were recorded on magnetic tape by a high-speed digital converter and relayed to the 

computer for data reduction. The sting-gage signals were used to correct the data for 
sting bending effects. More detailed explanation of the data reduction is given in Ref. 46. 
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4.4 UNCERTAINTY OF MEASUREMENTS 

4.4.1 General 

This section presents an evaluation of the influence of random measurement errors 
to provide a partial measure of the uncertainty of the final test results given. Although 
evaluation of the systematic measurement error (bias) is not included, it should be noted 

that the instrumentation uncertainty values used in this evaluation represent a total 

uncertainty combination of both systematic and two-sigma random error contributions. 

4.4.2 Test Conditions 

Tunnel A stilling chamber pressure is measured with a 15-, 60-, 150-, or 300-psid 
transducer referenced to a near vacuum. Based on periodic comparisons with secondary 

standards, the uncertainty (a bandwidth including 95 percent of the residuals) of these 

transducers is estimated to be within ±0.2 percent of reading or ±0.OI5 psi, whichever is 
greater. Stilling chamber temperature is measured with a copper-constantan thermocouple 

with an uncertainty of ±3°F based on repeat calibrations. 

Tunnel B stilling chamber pressure is measured with either a 200- or I,OOO-psid 
transducer referenced to a near vacuum. Based on periodic comparisons with secondary 
standards, the uncertainty (a bandwidth including 95 percent of the residuals) of these 
transducers is estimated to be within ±0.25 percent of reading or ±0.3 psi, whichever is 
greater for the 200-psid range, and to be within ±O.l percent of reading or ±0.5 psi, 
whichever is greater for the 1,000-psid range. Stilling chamber temperature measurements 

are made with Chromel-Alumel thermocouples that have an accuracy of ±O. 5°F + 0.375 
percent of reading in OF). 

The uncertainties in the tunnel stilling chamber pressure and temperature and a 

two-sigma deviation in Mach number determined from test section flow calibrations were 
used to estimate uncertainties in the other free-stream properties, Llsing the Taylor series 

method of error propagation. These uncertainties are presented in Tables 9 and 10. 

Measurement of tunnel model-support system attitude in pitch is precise to within 

±0.05 deg, based on repeat calibrations. Model attitude corrections were made for balance 

and sting deflections under air load. The precision of the final model mean angle of 
attack was estimated to be ±O.I deg. 
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4.4.3 Steady-State, Heat-Transfer Data 

The sensing surface (constantan foil) of the Gardon gage was thinly coated with a 
black paint having a high thermal absorptivity so that the gages could be statically 

calibrated with a radiant heat source (in this case, a set of quartz-iodide lamps). The 

accuracy of the scale factors, based on repeated calibration against a secondary standard, 
was estimated to be ±5 percent (two-sigma deviation) (Ref. 43). A set of conventional or 

standard 0.25-in.-diam Gardon gages acts as a facility secondary standard by which all 

other thermopile Gardon gages are statically calibrated. The calculated Stanton numbers 
were used only to indicate the type of boundary layer present on the model. The Gardon 
gage uncertainty was combined with the uncertainties in the free-stream conditions using 
the Taylor series method of error propagation. The uncertainty of the Stanton numbers 
was estimated at ±6 percent. 

4.4.4 Pressure Data 

Based on periodic comparisons with secondary standards, the uncertainty of the 

Tunnel A pressure system is estimated to be ±0.15 percent of the reading or ±0.003 psia, 
whichever is greater. The uncertainty of the Tunnel B pressure system is ±0.2 percent of 

reading or ±O.O 1 psia, whichever is greater, for the 15-psid transducers, and ±0.2 percent 

of reading or ±0.0003 psia, whichever is greater, for the l-psid transducers. After the 
pressure system uncertainties were combined with the uncertainties in the tunnel 

parameters, the Taylor series method of error propagation was used to estimate the 

uncertainty of the pressure parameters. These uncertainties are presented in Table 11. 

4.4.5 Pitch-Damping Data 

The balances were calibrated before and after the tests, and check calibrations were 
made during the test. The sting bending effects were included in the data reduction using 
the technique illustrated in Ref. 46. Uncertainties in the measurements of sting effects 

were included in the error analysis. Structural damping values were obtained at vacuum 
conditions before the test to evaluate the still-air damping contribution. The uncertainties 
in the balance and data system were combined with uncertainties in the tunnel 
parameters, in a Taylor series method of error propagation to estimate the uncertainty of 
the aerodynamic damping coefficients. These estimated uncertainties are presented in 

Table 12. 
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5.0 RESULTS AND DISCUSSION 

5.1 STEADY-STATE, HEAT-TRANSFER DATA 
(SLICED-BASE, 6-DEG CONE iViODEL) 

Figure 19 presents typical results of the steady-state, heat-transfer tests which were 
used to evaluate the state of the boundary layer over the sliced region of the model at a = O. 

Figure 19a shows data for the sharp nose configuration and establishes the capability of 

the theory (Ref. 47) to predict the turbulent heat-transfer levels. Data typical of those 

used to determine trip effectiveness and the state of the model boundary layer are shown 

in Figs. 19b and c for the 10-percent nose bluntness model (the primary test 
configuration). 

5.2 PRESSURE DATA (SLICED-BASE, 6-DEG CONE MODEL) 

Typical pressure distributions at a = 0 and 20 deg are presented in Fig. 20 for M = 
2 to establish the axial pressure distribution of each ray. The data are for the minimum 

sting diameter ratio (Ds/D = 0.19) and for the effective sting length ratios (Ls/D) of 1.0, 

2.0, and 3.9. The trends are as expected and are typical of the results at the other test 

Mach numbers. The fairings for Figs. 20 through 24 are straight-line, point-to-point 

computer fairings. 

Figure 21 presents selected pressure measurements nondimensionalized by 

free-stream static pressure as a function of angle of attack at M = 3 for several effective 

sting lengths and the minimum sting diameter (Ds /D = 0.19). The model insert on each 

figure shows the location of the pressure measurement. The model boundary layer over 

the sliced-base region was turbulent. Par a < 6 deg, the data in Fig. 21 show that 
decreasing the effective sting length ratio from 2.0 to 1.0 increased the pressures in the 

corner region (PI9, P20, P21, and P22), thus indicatii1g support interference effects. 

Surface pressures on the model centerline (PI 1 ) or close to the model centerline (such as 

PI 7, which is not shown) were not affected by the decrease in sting length. The sting 

effects on the corner pressures were typical of the M = :2 results, but the M = 5 results 

showed no sting effects on any surface pressures. The base pressures for M = 3 (Figs. 21 f 

and g) at a < 11 deg showed sting effects for Ls/D = 1. The base pressures for M = 2 are 
presented in Fig. 22. Sting effects for Ls/D = 1 were present al all angles of attack. The 

M = 5 base pressure data were obtained only for Ls/D = 1 and 3.9. Sting effects were 

present for Ls/D = 1. At M = 2 and 5, the model boundary layer was turbulent. The flare 

used to change the effective sting length was nominally 6 in. in diameter. A 4-in.-diam 

flare was also tested at M = 3 with the results agreeing with the 6-in.-diam flare data. 
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Figure 23 shows the Mach 8 pressure data for a turbulent boundary layer over the 
sliced-base region. Data for effective sting length ratios (3.9, 2.0, and 1.0) and for a 
minimum sting diameter ratio (0.19) are presented. Decreasing the effective sting length 
to one model diameter produced no appreciable effect on the surface pressures. Base 
pressures P23 and P26 were affected, but P24 and P25 were not. The Mach 8 laminar 
pressure data are shown in Fig. 24 as a function of angle of attack. Both the centerline 
(PI 1) and corner (PI9, P20, P21, and P22) pressure measurements were sensitive to sting 
length for a < 5 deg. Sting length also affected the base pressures for angles of attack of 
less than 16 deg. 

The data indicate that the maximum sting interference effects generally occurred at 
a = O. Pressure measurements are shown in Figs. 25 through 29 as a function of effective 
sting length for a = O. These data are for the minimum sting diameter ratio (Ds/D = 
0.19) and Mach numbers 2, 3, 5, and 8. The boundary layer was turbulent for the 
supersonic Mach numbers. Both turbulent and laminar cases are presented for the M = 8 
data. These data figures can be used for determining the critical sting length, defined as 
the shortest sting length that does not change the constant measurement level (base 
pressure, surface pressure, damping data, or static data) obtained by the longer stings. 

A review of the data in Figs. 25 through 29 shows that the critical sting length was 
dependent on the location of the measurement, Mach number, and boundary layer. The 
pressure measurement locations can be divided into three categories: (1) base (P23 
through P26), (2) corner (complex flow region-PI 8 through P22), and (3) centerline (PI 
through PI7). The locations of categories 2 and 3 can also be defined in terms of 
distance from the model base, upon which critical sting length was also dependent. Base 
pressures did not vary for effective sting lengths equal to or greater than two model 
diameters, except for the laminar boundary layer at Mach 8. For the Mach 8 laminar 
case, the critical sting length, based on base pressure measurements, is at least four model 
diameters. Corner effects on critical sting length for turbulent boundary layers were 
present for Mach numbers 2 and 3 but were nonexistent for Mach numbers 5 and 8. The 
corner effects as a function of sting length were also dependent on the distance between 
the pressure measurement location and the model base. This effect is evident in Figs. 25 
through 28 (the turbulent boundary layers), since P18 is in the corner (complex flow) 
region but was unaffected by changing the effective sting length. For turbulent boundary 
layers and all Mach numbers, the centerline (Ray 1, Fig. 3a) and near-centerline pressure 
measurements (Ray 2, Fig. 3a) were not affected by decreasing the effective sting length 
to one model diameter. Figures 28 and 29 show a drastic difference between the pressure 
measurements as a function of effective sting length for the turbulent and laminar 
boundary layers at Mach 8. The critical sting length was much larger for the laminar 
boundary layer, and even four model diameters may not be free of sting length effects 
(Fig. 29). 
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Centerline pressures for the laminar boundary layer were also affected by reduced 

effective sting lengths. The sting effects on the pressures were propagated further forward 
for the laminar boundary layer, in comparison to those for the turbulent boundary layer. 

The dependency of critical sting length on the boundary-layer state was also substantiated 
in the pitch-damping tests discussed in Section 5.3. 

Figure 30 summarizes Figs. 25 through 29 in the form of nondimensionalized 

critical sting length as a function of Mach number. For turbulent boundary layers the 
critical sting length as determined by the base- and centerline-pressure measurements is 
invariant with Mach number. 

A limited investigation of sting diameter effects was conducted at Mach numbers 3, 

5, and 8. Sting diameter ratios of 0.19, 0.35, and 0.50 were tested at Mach numbers 3 
and 5, but Ds/D = 0.5 was not tested at Mach number 8. Typical data for maximum 

length sting (Ls/D ::::; 4) are presented in Figs. 31, 32, and 33. In general, for a turbulent 
boundary layer, there was no large variation of surface or base pressure for the range of 

sting diameters investigated. These results were also typical of the Mach 5 data. The 
laminar data for Mach 8 showed more sensitivity to sting diameter (Fig. 33). 

5.3 PITCH-DAMPING DATA (7-DEG CONE MODEL) 

The main purpose of the pitch-damping tests was to investigate sting length effects 

on damping derivatives for different model boundary-layer conditions and for two 
frequencies of oscillation. The boundary-layer state requirement dictated an investigation 
to determine the proper trip size. Derivatives for pitch-damping and static stability for 
conical models at a = 0 generally exhibit well-known trends (Ref. 22) with Reynolds 
number when the Reynolds number range covers laminar, transitional, and turbulent 
boundary-layer conditions over the model. The derivatives are generally independent of 
Reynolds number if the boundary-layer flow over the model base is either fully laminar 
or fully turbulent. The damping derivatives (Cm + Cm .) generally increase above the 

q a 

laminar or turbulent level when transition is near the model base. The opposite is true for 
the static stability derivative (Cm ). Figures 34 and 35 show typical results at a = 0 for a 
the various trips tested at M = 5 and 8. For both these Mach numbers, the Reynolds 

number range was not sufficient to produce a turbulent boundary layer near the model 

base. At Mach 5, number 36 grit was used to trip the boundary layer. The tripped 
dynamic and static stability derivative levels agreed well with the laminar data (Fig. 34), 

thus showing the effectiveness of the trip. At M = 8 (Fig. 35) different sphere diameters 
and number 36 grit trips were tested. The data in Fig. 35b show that the trips had 

essentially no adverse effect on the dynamic and static stability derivatives. Also, the grit 

produced essentially the same data as the trip spheres. 
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Figures 36 through 41 show the damping derivatives, static derivatives, static 
pitching moment, and base pressure (shown only in Figs. 36 through 39) as a function of 

angle of attack for the clean sting (Ls/D = 3.3) and for the interference sting (Ls/D = 

1.0). Data are presented for different boundary-layer conditions, reduced frequency 
parameters, and Mach numbers. A detailed discussion of the a = 0 data will be presented 
later in the report. The sting interference effects at angles of attack are a function of 

model-base boundary-layer conditions, Mach number, and reduced frequency parameter. 
In general, the interference sting configuration produced significant effects on the 
damping derivatives, static stability derivatives, and base pressure. Static pitching moment 
was essentially affected only at M = 2 for the laminar boundary-layer condition. 

The dynamic and static stability derivatives as a function of effective sting length are 

presented in Figs. 42 through 47 for zero angle of attack. The variables for these data 
were Mach number, reduced frequency parameter, and boundary-layer state. The dynamic 

stability derivatives (Cm + Cm . ) exhibited trends that depended on all the variables. At q a 

the lower Mach numbers, 2 and 3 (Figs. 42a and 43), decreasing the effective sting length 

did not affect the results until the value of Ls/D was less than 2. At Mach number 5 
(Fig. 44) no significant effect is observed for Ls/D in the range from 3.3 to 1.0. At M = 

8 (Fig. 46), the effect of sting length was observed at values of Ls/D under 2.5 for all 
cases tested, except for the RFP = 0.0032 laminar-flow case (Fig. 46a), for which sting 

effects were observed at Ls/D values under 3.3. The static stability derivative (Cm a) was 
not generally affected by sting length except at the lowest Mach number (Figs. 42b, 45, 

and 47). At M = 2 (Fig. 42b) the level of Cm was reduced as the Ls/D was decreased 
a 

from 2.0 to 1.0. 

The behavior of the base pressure with effective sting length is shown in Figs. 48 

through 50 for Mach numbers 2, 3, and 5. These results indicate significant effects for 

Ls/D values of less than 2.0 for Mach numbers 2, 3, and 5 with a turbulent boundary 
layer. At Mach number 5, effective sting lengths greater than 3.3 are required for 
noninterference support on a model with a laminar boundary layer. 

Figure 51 summarizes the critical sting lengths determined from measurements of 

dynamic and static stability derivatives, base pressures, and static pitching moment for 
the 7-deg cone. The summary in Ref. 1 shows that different interference indicators can 
produce different critical sting lengths. For dynamic stability testing at supersonic speeds, 
the effective sting length generally should be two model diameters and is independent of 
the state of the boundary layer and the frequency of oscillation. At hypersonic speeds, 
the critical sting length for measurement of damping-in-pitch derivatives is dependent on 

boundary-layer state and oscillation frequency, whereas the critical sting length for the 
measurement of the static stability derivatives is not. The base-pressure critical sting 
length was a function of the boundary-layer state (which is well-documented in Ref. 2), 
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whereas the critical sting length that was determined from static pitching moment was 

insensitive to all variables, except where previously noted at M = 2 for the laminar 
boundary-layer condition. 

The effects of the splitter plates on the damping derivatives and base pressure for 
j 

the clean (Ls/D = 3.3) and interference (Ls/D = 1.0) stings are presented in Figs. 52 

through 56. Because of the trend of the M = 8 damping data with Ls/D (see Fig. 46, in 

which the damping level at Ls/D = 1.0 is about the same as that at Ls/D = 3.3), the 
effectiveness of the splitter plates in reducing sting interference could not be determined. 

The addition of the plates to the clean sting configuration usually produced only small 
changes in the damping data, mainly at the higher oscillation frequencies. This encourages 

the incorporation of thin-rib stiffeners in the design of long slender stings. The M = 3 
splitter-plate investigations are reported in Ref. 1. 

6.0 CONCLUDING REMARKS 

Sting interference effects as determined from measurements of surface pressures, 
base pressures, static pitching moment, damping-in-pitch derivatives, and static stability 
derivatives were investigated for Mach numbers 2 through 8. Additional variables included 
angle of attack, frequency of oscillation, and the state of the model boundary layer. Data 
were obtained for a blunt, sliced-base, 6-deg cone and for a blunt 7-deg cone. Reynolds 

number, based on model diameter, ranged from 0.3 x 106 to 4.5 x 106 . Based on the 
results of this investigation the following conclusions were drawn: 

General 

1. Critical sting length is dependent on the parameter selected as the 
interference indicator. 

2. Sting length effects are more likely to occur for laminar model boundary 
layers than for turbulent boundary layers. 

3. For pressure and static force tests at supersonic and hypersonic speeds 

with turbulent model boundary layers, the critical sting length is generally 
two model diameters. 

4. Critical sting length determined by the measurement of base pressures is 
dependent on the model boundary layer. 

6-Deg Sliced-Base Cone Model 

1. Sting length effects on surface pressure measurements generally 
disappeared for a > 6 deg. Sting length effects on base pressure 
measurements generally occurred for a ~ 24 deg. 
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2. Critical sting length determined by surface pressure measurements is a 
function of the location of the measurement (whether the measurement is 
in a complex flow region, such as the corner of a sliced base, or on the 

model centerline, located some distance from the corner). 

3. In general for Mach numbers 3 and 5 for a turbulent boundary layer, 
there was no large variation of surface or base pressure for the range of 
sting diameters investigated. 

7-Deg Cone Model 

1. For dynamic stability testing at supersonic speeds (M = 2 to 5), the 

critical sting length as determined by the measurement of pitch-damping 

derivatives is independent of the boundary-layer state and oscillation 
frequency. The critical sting length is two model diameters. 

2. For hypersonic Mach numbers, the critical sting length as determined by 

the measurement of pitch-damping derivatives is dependent on model 
boundary-layer state and oscillation frequency. For turbulent boundary 

layers at the model base, the critical sting length is 2.5 model diameters. 

3. As determined by the measurement of the static stability derivative, Cm , 
a 

critical sting length was dependent on Mach number but independent of 

the boundary-layer state and oscillation frequency. The critical sting length 
for Cm was generally equal to or less than that for the pitch-damping 

a 
derivatives. 
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Figure 3. Continued. 
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Figure 5. Boundary-layer trip details for pressure-heat transfer tests. 
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b. Ls/D = 3.0, 6-in. flare 

c. Ls/D = 2.0, 6-in. flare 

d. Ls/D = 1.0, 6-in. flare 

e. Ls/D = 1.0, 4-in. flare 
Figure 6. Sting configurations for pressure model, 

Ds = 0.19. 
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Figure 7. Sting configurations for pressure model, 

DsiD = 0.35. 
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Figure 8. Sting configurations for pressure model, 

Ds/D = 0.50. 
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Figure 9. Pressure model instal~ation in Tunnel A test section 
tank, ls/O = 1.0, OslO = 0.19, 6-in. flare. 
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Figure 53. Splitter-plate effects on damping derivatives for two 

reduced frequencies, laminar boundary layer, 
M = 8, ls/D = 1.0. 
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Figure 54. Splitter-plate effects on damping derivatives for two 

reduced frequencies, turbulent boundary layer, 
M = 8, Ls/D = 1.0. 
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Figure 55. Splitter-plate effects on damping derivatives for two 

reduced frequencies, laminar boundary layer, 
M = 8, Ls/D = 3.3. 
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Figure 56. Splitter-plate effects on damping derivatives for two 

reduced frequencies, turbulent boundary layer, 
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Table 1. Test Conditions (Pressure Tests) 

PT, TT, V, P, Q, T, RE/ft RED 
M psia oR ft/sec psi psi oR x 10-6 x 10-6 

2.00 21 650 1,862 2.68 7.51 361 4.17 2.78 

3.01 51 660 2,260 1.37 8.67 235 5.86 3.91 

5.06 150 660 2,575 0.26 4.74 108 6.10 4.07 

7.96 300 1,260 3,744 0.03 1. 41 92 1.46 0.97 

7.96 300 1,370 3,904 0.03 1.41 100 1.29 0.86 

8.00 850 1,350 3,877 0.09 3.90 98 3.68 2.45 

Table 2. Test Conditions (Pitch-Damping Tests) 

PT, TT, V, P, Q, T, RE/ft RED 
M psia oR ft/sec psi psi oR x 10-6 x 10-6 

1.88 3.4 579 1,697 0.523 1.30 339 0.83 0.56 

1.92 5.4 573 1,709 0.781 2.02 330 1.32 0.88 

1.97 19.8 580 1 , 7 !+5 2.65 7.20 327 4.66 3.11 

2.99 50.l 591 2,134 1.39 8.66 212 6.85 !+. 57 

5.02 20.2 607 2,467 0.037 0.66 101 0.95 0.63 

5.02 28.0 582 2,416 0.052 0.91 96 1.40 0.93 

5.09 114.6 650 2,559 0.195 3.54 105 4.71 3.14 

5.09 154.3 651 2,561 0.263 4.77 105 6.32 4.22 

7.90 104.3 1,356 3,884 0.012 0.51 101 0.46 0.31 

7.96 301.8 1,338 3,860 0.032 1.42 98 1.34 0.89 

7.98 502.4 1,359 3,891 0.052 2.33 99 2.17 1.45 

8.00 704.8 1,358 3,890 0.072 3.23 98 3.02 2.02 

8.00 858.1 1,355 3,886 0.088 3.94 98 3.70 2.46 
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Table 3. Pressure Test Summary (Tunnel A) 

Trip 
PT, RED ct. Grit 

* 10-6 
M DTI Flare LS/D DS/D psia x deg ~/RB Number 

5.06 1 None 3.88 0.19 150 4.1 0 0.1 None 

5.06 2 None 3.88 0.19 150 4.1 -0.7 to 22.0 0.1 None 

5.06 1 None 3.88 0.19 150 4.1 0 0.1 36 

5.06 2 None 3.88 0.19 150 4.1 -0.7 to 22.0 0.1 36 

5.06 1 None 3.88 0.19 150 4.1 0 0.1 20 

5.06 2 None 3.88 0.19 150 4.1 -0.7 to 22.0 0.1 20 

5.06 2 None 3.88 0.19 150 4.1 -0.7 to 22.0 0 None 

5.06 2 6 1.04 0.19 150 4.1 --0.7 to 22.0 0.1 36 

5.06 2 6 2.03 0.19 150 4.1 -0.7 to 22.0 0.1 

5.06 2 None 3.90 0.35 150 4.1 -0.8 to 22.0 0.1 

5.06 2 6 1.00 0.35 150 4.1 -0.8 to 22.0 0.1 

5.06 2 None 4.16 0.50 150 4.1 -0.8 to 22.0 0.1 

5.06 2 6 1.00 0.50 150 4.1 -0.7 to 22.0 0.1 

3.01 1 None 3.88 0.19 51 3.9 0 0.1 60 

3.01 2 None 3.88 0.19 51 3.9 -0.7 to 23.2 0.1 60 

3.01 1 None 3.88 0.19 51 3.9 0 0 None 

3.01 2 None 3.88 0.19 51 3.9 -0.7 to 23.2 0 None 

3.01 2 6 3.03 0.19 51 3.9 -0.7 to 22.3 0.1 60 

3.01 2 6 2.03 0.19 51 3.9 -0.7 to 22.3 0.1 

3.01 2 6 1.04 0.19 51 3.9 -0.7 to 6.6 0.1 

3.01 2 4 1.05 0.19 51 3.9 -0.7 to 22.3 0.1 

3.01 2 None 3.90 0.35 51 3.9 -0.7 to 22.3 0.1 

3.01 2 6 2.00 0.35 51 3.9 _0.7 to 22.3 0.1 

3.01 2 6 1.00 0.35 51 3.9 -0.7 to 22.3 0.1 

3.01 2 None 4.16 0.50 51 3.9 -0.7 to 22.3 0.1 

3.01 2 6 2.00 0.50 51 3.9 -0.7 to 22.3 0.1 

3.01 2 6 1.00 0.50 51 3.9 -0.7 to 22.3 0.1 

2.00 2 None 3.88 0.19 21 2.8 -0.7 to 22.4 0.1 

2.00 2 6 2.03 0.19 21 2.8 -0.7 to 22.5 0.1 

2.00 2 6 1.04 0.19 21 2.8 -0.7 to 22.5 0.1 

5.00 2 None 3.88 0.19 150 4.3 -0.7 to 21.2 0.1 36 

5.00 2 6 1.04 0.19 150 4.3 +0.1 to 21.2 0.1 36 

* 1 indicates heat-transfer data; 2 indicates pressure data. 
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Table 4. Pressure Test Summary (Tunnel B) 

I 
RED 

Trip 

* 
PT, 

x 10-6 
a, Sphere 

M DTI Flare Ls/D Ds/D psia deg V~ Diameter 

----- .-

7.96 1 None 3.88 0.19 300 1.0 0.1 0.1 None 

8.00 1 None 3.88 0.19 850 2.4 0 0.1 None 

8.00 1 None 3.88 0.19 850 2.4 0 0.1 0.063 

8.00 1 None 3.88 0.19 850 2.4 -0.1 0 None 

8.00 1 None 3.88 0.19 850 2.4 -0.1 0.1 0.078 

8.00 1 None 3.88 0.19 850 2.4 -0.1 0.1 0.094 

8.00 1 None 3.88 0.19 850 2.4 -0.1 0.1 0.063 

8.00 2 None 3.88 0.19 850 2.4 -1.1 to 24.8 0 None 

8.00 2 None 3.88 0.19 850 2.4 0 to 24.8 0.1 0.063 

8.00 2 6 2.03 0.19 850 2.4 0 to 24.8 0.1 0.063 

8.00 2 6 2.03 0.19 850 2.4 0 0 None 

8.00 2 6 1.04 0.19 850 2.4 0 0 None 

8.00 2 6 1.04 0.19 850 2.4 0 to 24.8 0.1 0.063 

8.00 2 None 3.90 0.35 850 2.4 0 to 20.7 0.1 0.063 

8.00 2 6 2,00 0.35 850 2.4 0 to 20,7 0.1 0.063 

8.00 2 6 1,00 0.35 850 2.4 0 to 20.7 0.1 0.063 

7.96 2 6 1.00 0.35 300 0.9 -0.1 0.1 None 

7.96 2 6 2.00 0.35 300 0.9 -0.1 0.1 None 

7.96 2 None 3.90 0.35 300 0.9 -0.1 0.1 None 

7.96 2 6 3.00 0.35 300 0,9 0 0.1 None 

7.96 2 None 3.90 0.19 300 0,9 0 to 20.2 0.1 None 

7.96 2 6 2.03 0.19 300 0,9 0 0.1 None 

7.96 2 6 1.04 0.19 300 0.9 0 to 20.2 0.1 None 

7.96 2 6 3.03 0.19 300 0.9 0 0.1 None 

7.96 2 6 2.50 0.19 300 0.9 -0.1 0.1 None 

* indicates heat-transfer data; 2 indicates pressure data. 

128 



AEDC-TR-79-89 

Table 5. Tunnel A Pitch-Damping Test Summary (RFP ~ 0.003) 

I 
Trip RED I 

Plate Grit PT, 
10-6 a, 

M Number Number LS/D psia x deg 

2.99 None None 3.3 50.1 4.5 -0.26 to 2.73 

1.97 None None 3.3 19.9 3.1 -4.98 to 1.16 

1.92 None None 3.3 5.4 0.8 -0.24 to 7.67 

1.87 None None 3.3 3.4 0.5 -0.13 

5.02 None None 3.3 28.0 0.9 -0.08 

5.02 None None 3.3 20.2 0.6 -0.08 

5.02 None None 3.3 20.2 0.6 -0.05 to 7.62 

5.09 None None 3.3 154.3 4.2 -0.01 to 4.57 

5.09 None 36 3.3 154.5 4.2 -0.04 to 4.48 

5.09 None None 3,3 116.4 3.1 -0.02 

5.05 None None 2.0 150.1 4.2 0.02 

5.05 None 36 2.0 150.0 4.1 0.01 

5.02 None None 2.0 19.3 0.5 -0.07 to 7.60 

5.07 None None 1.0 152.2 4.2 0 to 3.88 

5.07 None 36 1.0 152,4 4.2 -0 .. 17 to 4.51 

5.02 None None 1.0 19.7 0.5 -0.09 to 7.61 

5.02 4 None 3.3 19,9 0.6 -0.08 to 7.61 

5.06 4 36 3.3 149.9 4.1 -0,05 

1.99* 4 None 3.3 19.0 2.9 -0.18 

1 . 99'~ 4 None 3.3 19.0 2,9 -0.18 

1.99* 4 None 3.3 19.0 2,9 -0.17 
I 
I 

* Base-pressure data only. 
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Table 6. Tunnel A Pitch-Damping Test Summary (RFP ~ 0.006) 

Trip RED Plate Grit PT, 
10-6 a, 

11 Number Number LS/D psia x deg 

5.10 None None 3.3 156.7 4,2 -0.05 to 7.35 

5.10 None 36 3.3 156.7 4.2 -0.05 to 7.34 

5.10 None 36 2,0 156,8 4.2 -0.05 

5.07 None 36 2.5 151,8 4.2 -0.04 

5.07 None None 2,5 151.8 4.2 -0.04 

5.07 None None 2,0 151 .8 4.2 -0.04 

5.07 None None 1,0 151.7 4.2 -0.05 

5.07 None 36 1.0 151. 7 4.2 -0.07 to 7.34 

4.99 None 36 1.0 29.1 0.8 -0.11 

4.99 None None 1.0 29.0 0.8 -0.08 to 7.81 

4.99 None None 3.3 29.0 0.8 -0.12 to 7.81 

1.98 None None 3.3 19.6 3,1 -0.34 

1.98 None None 3.3 19.4 3.0 -0.35 

1.98 None None 3.3 19.2 3.0 -7.95 to 7.38 

1.98 None None 2.0 19.3 3.0 -0.34 

1. 98 None None 1.0 19.3 3.0 -0.33 to 7.38 

1.88 None None 1.0 3.5 0.6 -0.05 to 8.0 

1.88 None None 3.3 3.3 0.5 -0.05 to 7.97 

1. 88 None None 2.0 3.5 0.6 -0.05 to 7.97 
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Table 7. Tunnel B Pitch-Damping Test Summary (RFP ~ 0.002) 

M = 8.00 

Trip RED 
Plate Sphere PT, 

x 10-6 a, 
Number Diameter LS/D psia deg 

None None 3.3 859 2.5 -0.07 to 2.92 

None 0.031 3.3 859 2.5 -0.07 to 2.91 

None 0.031 2.0 858 2.5 -0.08 

None None 2.0 859 2.5 -0.10 

None None 2.5 859 2.5 -0.09 

None 0.031 2.5 859 2.5 -0.09 

None 0.031 1.5 851 2.4 -0,09 

None None 1.5 852 2.4 -0.10 

None None 1.0 851 2.4 -0.10 to 2.90 

None 0.031 1.0 851 2.4 -0.08 to 2.88 

None 0.031 1.0 851 2,4 -0.08 to 2,89 

1 0.031 1.0 851 2.4 -0.10 to 2.88 

1 None 1.0 851 2.4 -0.08 to 2.88 

4 None 3.3 850 2.4 -0.07 to 2.89 

4 0.031 3.3 851 2.4 -0.07 to 2.87 

8 0.031 3.3 850 2.4 -0.07 to 2.88 

8 None 3.3 852 ?4 -0.08 to 2,88 

None None 3.3 501 1.5 -0.07 

None None 3.3 501 1.5 -0.08 to 4.96 

None 0.031 3.3 500 1.5 -0.07 to 4.95 

None 0.031 2.5 [199 1.5 -0.08 

None None 2.5 500 1.5 -0.08 

None None 2.0 500 1.5 -0.08 

None None 2.0 500 1.5 3,22 

None 0.031 2,0 501 1.5 -0.10 

None 0.031 2.0 502 1.5 -0.10 

None None 1.0 501 1.5 -0.10 to 4.96 

None None 3,5 501 1.5 -0.07 
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Table 8. Tunnel B Pitch-Damping Test Summary (RFP ~ 0.003) 

M = 8.00 

Plate 
Trip 

PT, RED 
Sphere 10-6 a, 

Number Diameter LS/D psia x deg 

None None 3.3 100 0.3 ~O,07 

None None 3.3 300 0.9 -0.12 

None None 3.3 502 1.4 -0.12 

None None 3.3 704 2.0 -0.10 

None None 3.3 858 2.5 -0.10 

None * 3.3 856 2.4 -0.10 

None 0.040 3.3 855 2.4 -0.11 

None 0.030 3.3 856 2.5 -0.11 

None 0.063 3.3 857 2.5 -0.08 

None 0.030 3.3 706 2.0 -0.01 

None None 3.3 857 2.5 -0.05 to 7.42 

None 0.047 3.3 857 2.5 -0.04 to 7.34 

None 0.047 2.0 857 2.5 -0.05 

None None 2.0 856 2.5 -0.06 

None None 2.5 860 2.5 -0.06 

None 0.047 2.5 858 2.5 -0.06 

None 0.047 1.0 857 2.5 -0.06 to 7.31 

None None 1.0 857 2.5 -0.08 to 7.38 

None None 1.5 857 2.5 -0.08 

None 0.047 1.5 858 2.5 -0.07 

1 0.047 1.0 856 2.5 -0.07 to 7.30 

1 None 1.0 858 2.5 -0.09 to 7.34 

4 None 3.3 855 2.4 -0.08 to 7.39 

4 0.047 3.3 856 2.5 -0.07 to 7.29 

4 0.047 3.3 859 2.5 -7.44, 0, 7.26 

* Trip = Number 36 Grit 
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Table 9. Test Condition Uncertainties (Pressure Tests) 

Uncertainty, ±Percent of Actual Value 

M RED x 10-6 
M PT P TT T V Q RED 

--- __ 0 _,.0 __ ----.. -- --

2.00 2.78 0.8 0.2 L.5 0.5 0.9 0.5 0,9 1.0 

3.01 3.91 0.6 0.2 2.6 0.5 0.9 0.3 1.4 1.2 

5.06 4.07 0.5 0.2 3.0 0.5 1.0 0.3 2.0 1.4 

7.96 0.86 0.4 0.1 2,1f 0.4 0.8 0.2 1,7 1.2 

7.96 0.97 0.4 0.1 2.4 0.4 0.8 0.2 1.7 1.2 

8.00 2.45 0.3 0.1 1.6 0.4 0.6 0.2 1.1 0.9 

Table 10. Test Condition Uncertainties (Pitch-Damping Tests) 

Uncertainty, ±Percent of Actual Value 

10-6 --
M RED x M PT P TT T V Q RED 

- _. ___ ._n -:--- ----== F==:':'= 

1.88 0.56 0.8 0.4 2.5 0.5 0.9 0.6 0,8 0.9 

1.97 3.11 0.8 0.2 2.5 0.5 0.9 0.5 0.9 1.0 

5.02 0.63 0.5 0.2 3.0 0.5 1.0 0.6 2.0 1.4 

5.09 4.22 0.5 0.2 3.0 0.5 1.0 0.3 2.0 1.4 

7.98 1.45 0.3 0.1 1.6 0.4 0.6 0.2 1.1 0.9 

8.00 2.46 0.3 0.1 1.6 0.4 0.6 0.2 1.1 0.9 

Table 11. Uncertainties of Pressure Measurements 

Uncertainty, 
M ct, deg PN/P ±Percent PN/P 

2 0 0.24 2.5 

22.5 2.10 2.5 

3 0 0.20 2.8 

23.1 4.10 2.6 

5 0 0.10 10.4 

21. 2 7.7 3.0 

7.96 0 0.21 5.2 

20.2 17.6 2.4 

8.00 0 0.16 2.7 

24.8 24.30 1.7 
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Table 12. Uncertainties of Pitch-Damping Measurements 

RFP x 103 i\(RFP) x 103 
C + C i\(C + C ) C 

rna m. rna rna m 
Ct Ct 

6.92 ±0.041 -5.3 ±0.11 -0.11 

-7.8 ±O.lS -0.08 

6.90 ±0.03S -5.4 ±0.10 -0.09 

-6.7 ±O,13 -0.14 

4.62 ±0.014 -3.4 ±0.12 -0.31 

-4.8 ±O .15 -0.22 

2.70 ±0.008 -3.6 ±O .12 -0.31 

-4.9 ±O.lS -0.22 

2.70 ±0.008 -5.3 ±0.13 -0.17 

-4.9 ±0.12 -0.35 

4.76 ±0.014 -4.9 ±0.13 -0.18 

-4.6 ±0.12 -0.30 

1.80 ±0.004 -2.3 ±0.06 -0.38 

-3.9 ±0.09 -0.30 

3.18 ±0.006 -2.4 ±0.06 -0.39 

-6.0 ±0.12 -0.09 

1.95 ±0.004 -2.2 ±O.OS -0.39 

-2.6 ±O.OS -0.40 

------ L-_____ _ _______ -

i\(C ) C 
m m 

Ct 

±0.009 -
±0.009 -0.003 

±0.003 -
±0.004 -0.027 

±0.013 -
±0.013 -0.038 

±0.008 -
±O.007 -0.039 

±0.004 -
±0.007 -0.022 

±O.OOS -
±0.007 -0.038 

±O.OOS -
±0.004 -0.033 

±O.OOS -
±0.003 -0.041 

±O.OOS -
±O.OOS -0.020 

i\(C ) 
m 

-
±0.00006 

-
±0.0006 

-
±0.0011 

-
±0.O012 

-
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-
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-
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-
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-
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REL ~ 0.4 x 106 
to 10 x 106 
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REL - 0.6 x 106 

to 5 x 106 
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to 40 x 106 

Boundary 
Layer 

Laminar, 
Transi tional, 

Turbulent 

Laminar 

Laminar, 
Turbulent 

Laminar, 
Turbulent 

Turbulent 

Appendix A 
Summary of Available References 

Model 

Ogive 
Cylinders 

with 
without 

Boattails 

9- and 
10-deg 

Cones 

Cone 
Cylinder 

Ogive 
Cylinders 
with and 

without 
Boattails 

Ogive 
Cylinders 

Ogive 
Cylinders 

Model 
Support 

Sting 

Sting 
and free 
flight 

Sting 

Sting, 
Strut 

Sting 

Strut 
and 

Dummy 
Stings 

Ls/D 

to 
5.75 

11.0 

0.5 
to 

10.5 

0.7 
to 

7.2 

2 
to 
8 

2.5 
to 

6 

D ID 
s 

0.3, 
0.5 

0.33 

0.18, 
0.23 

·0.25 
to 

1.0 

0.25 
to 

0.75 

0.06 
to 

0.6 

Measurements 

PB Drag 

PB 

PB 

PB Drag 

PB 

PB 

Findings 

1. PB and Ler dependent on transition 
location and length Reynolds 
number. 

2. Lcr/D ~ 1 to 5. 
3. Ler determined by the measurements 

of fore drag. and base drag were 
approximately equal. 

1. Severe differences between free
flight and sting-supp~r_ted base 
pressures. 

1. Theoretical prediction of base 
pressure. 

1. Lcr/D = 3 to 10.5 depending on 
REL. 

2. No effect of base pressure 
orifice location . 

1. Lcr/D = 5.2 for zero boa ttail 
configuration wi th laminar or 
turbulent flow. 

2. Lcr/D = 1.7 for boattail con
figurations with laminar or 
turbulent boundary layer. 

3. For zero boattail configuration 

;~n~:s o~o! ~!!~C~~~p~~t ~he pre-
4. For a boCa ttail configurat ion 

with laminar boundary layer, CA 
was affected by the presence of 
a rear support. 

1. Lcr/D = 2 for M = 2.7, 3.5 and 
4 for laminar and turbulent 
boundary layer. 

2. At M = 5, Lcr/D = 6 and 4 for 
laminar and turbulent boundary 
layers, respectively. 

3. Essentially no effect of base 
pressure orifice location. 

1. PB decreased with increasing 
OslO and was REL dependent. 

2. For OslO = 0.375, PB was insen
sitive to REL. 

3. Decreasing Ls/D from 6 to 2.5 
had no effect on PB. 
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M 

2, 
2.9 

0.7 
to 

1.4 

0.65 
to 

2.2 

0.6 
to 

1.4 

4 

~ 20 

Reynolds 
Number 

REL ~ 4 x 106 
to 7.5 x 106 

REL ~ 2.7 x 106 

to 3.3 x 106 

RED ~ 0.5 x 10~ 
to 1.1 x 10 

REL 8 x 106 

REL ~ 0.4 x 106 
to 10 x 106 

REL ~ 0.5 x 106 
to 7 x 106 
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Boundary Model 
Layer Model Support 

Cone 
Cylinders 

Laminar, and Sting 
TUrbulent Ogive 

Cylinders 

Ogive Strut, 
Cylinder Sting 

Blunt- Sting 
Cylinder-

Flare 

Ogive Strut, 
Cylinder Sting 
with and 
without 

Boattail 

I Laminar, ·10-deg Free 
Transi tional, Cone Flight, 

Turbulent Sting 

Laminar 10-deg 
Cone 

L iD s 
D iD 

s 
Measurements 

1.2 0 
to to PB 

4.4 1 

2.4 0.5 PB, PS 
to 

8.4 

2.5 0.23 PB 
to to 

4.8 0.59 

I 
0.25 PB, Drag 

to to 
8.5 0.75 

0.25 PB 

PB 

Findings 

1. Lcr/D = 3 at M = 2 for laminar 
and tUrbulent boundary layer. 

2. Lcr/O = 3 at M = 2.9 for tur-
bulent boundary layer. 

3. PB generally decreased with 
increasing OslO. 

1. Strut configurations had little 
effect on PB at subsonic M but 
induced significant base 
interference at low supersonic M. 

1. Lcr/o > 4.8 for subsonic M. 
2. Lcr/O < 2.5 for supersonic M. 

1. Cylindrical model: Lcr/D = 4.5 at 
M ~ 0.6, Lcr/D ~ 5.5 at M ~ 0.95, 
Lcr/n = 2.6 at M = 1.4 all for 
Ds/D = 0.5 and based on PB. 

2. Boattail model: Lcr/D = 5.1 at 
M = 0.6, Lcr/D = 6.1 at M = 0.95, 
Lcr/D - 4.3 at M = 1.4 all for 
Ds/D = 0.43 and based on PB. 

3. Critical sting lengths for the boat-
ta il model determined by measure-
ments of base drag were approxi-
ma tely 1 model diameter greater than 
those determined by fore drag. 

1. For laminar boundary layer, (PB) 
free = 0.75 (PB) sting. 

2. For turbulent boundary layer, 
(PB) free ~ (PB) sting. 

3. Found no radial gradients in 
sting base pressure data. 

1. Flight base pressures showed 
radial gradients which decreased 
monotonically from the centerline 
value. 
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RE/ft ~ 1.5 x 106 Jaffe, 0.7 Turbulent 
Ref. 15 to to 3.5 x 106 

1.2 

RED ~ 0.12 x 106 

I I 
Vlaj inac, 0.28 Turbulent 
Ref. 16 

Adcock, 0.26 RED 1.2 x 106 Turbulent ...... Ref. 17 and 
W 0.9 
-...l 

Fuller, 1.5 RED 0.75 x 106 Turbulent 
Ref. 18 to 

2.86 

Tunnell, 0.6 

I 
Turbulent 

I 
Ref. 19 to 

1.3 

van der 0.5 
Zwaan 

Ericsson, 
Ref. 20 

Appendix A 
Continued 

lO-deg 
Cone, 

Sphere, 
60-deg Free 

Cone, Flight, 
Blunt Sting 

Cylindrical 
Conf igura t ion 

6-deg Magnetic 
Cone Suspension 
with with 

Bulbous Dummy 
Base Sting 

6-deg Sting 
Cone 
with 

Bulbous 
Base 

Ogive Strut 
Cylinders with 
with and Dummy 
without Stings 

Boattails 

I 
Winged Sting 
Vehicle 

W-inged Strut, 
Vehicle Sting 

Blunt 
and 

Slender 
Cones 
with 

Rounded 
Bases 

1. 60-deg cone and sphere were 
insensi tive to the presence of 
the sting, 

2. For lO-deg cone, sting effect 
was appreciable for Ds/D = 0.67 
and negligible for Ds/D = 0.37. 

7 0.37 PB, Drag Comparison of free-flight data 
to to wi tb Ds/D = 0.37 data was good. 

11.6 1.0 3. The fore drag for the lO-deg 
cone and blunt cylindrical can-
figura tion was influenced by 
the presence of the sting. 

4. The free-flight drag data for the 
blunt configuration was 15 percent 
higher than the sting data. 

. The presence of the sting (Ds/D = 
4.7 0.25 Lift, 0.25, Ls/D = 4.7) produced can 

Drag siderable effects on lift and 
drag. 

2. The sting increased mode 1 
stability at and near a = O. 

-- - Static 1. Offset stings relative to the 
Cofficients, model base produced significan 

Surface effects on the static data and 
Pressure the model surface pressures in 

the base region. 

3.3 0.25. StatiC 1. Variation of Ds/D from 0 to 0,75 
0.5, Coefficients had little effect on the static 
0.75 data. 

I I 

1. Theoretical prediction of base 
0.5 0.85, I PB, Drag pressure resulting fr9m conica 
to 0.93 flare on sting. 

4.6 2. Sting length effects were a 
maximum in the subsonic-transonic 
region. 

Lift, C 
1. Theoretical predictions of 

m support interference on lift and 
pi tching moment agreed well with 
experimental data. 

1. Proposed an analytical means for 
evaluating sting interference 
effects in dynamic stability » measurements on bulbous base 
configurations. m 

2. Discussed effects of separated 0 
flow about bulbous base () 

configura tions. ~ 
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Reynolds 
M Number 

RED ~ 0.68 x 106 0.65, 
1.0, to 1.54 x 106 
1.6 

2.5, RED ~ 0.45 x 106 

3.4 to 10.2 x 106 

3 RED ~ 3.2 x 106 

RED ~ 0.25 x 10~ 1.6 
to to 1.49 x 10 
3 

- --

3.1 REL ~ 2 x 106 
to 14 x 106 

Boundary 
Layer 

--

Laminar, 
Transitional, 

Turbulent 

Turbulent 

-

--

--

Appendix A 
Continued 

Model 
Model Support 

12.5 deg 
Blunt CODe Sting 

with and 
without 
Rounded 

Base 

lO-deg Cone Sting 

7-deg Cone Sting 

70-deg Cone Sting, 
Free 

Flight 

-- --

Cone Cylinder Sting 

Ls/D D~/D Measurements 

0, 0.31 e + e 
1.85, to mq mci 
3.7 0.47 

PB, 

0.75 0.2 em + em.' 
to to q a 

3 0.8 e 
ma 

1 
to 0.22 em + e m. 
5 q e a 

m 

e + e m m-1.5 0.18 q a 
to to 

Wake 3.5 0.53 
Geometry 

--- --- ---

4 0.5 PS,PB 

Findings 

1. Variation of Ls/D = 0 to 3.7 
-and OslO ~ 0.31 to 0.47 affected 

~~~ ;o~~~e~~~~s:tc~n;i~~;~t~~~. 
2. Results should be used with 

caution since interference 
hardware was attached to the 
sting. 

3. The addition of a plate to the 
sting CLs/D = 3.7) decreased 
model instability at M = 0.65 
(rounded base), but had 
essentially no effect at M = 1 
and 1.6 

1. Lcr/D as determined by PB for 
Ds/D = 0.4 was between 1.5 and 
2.25 for M ~ 2.5 and 3. At M ~ 4, 
Lcr/D was between 0.75 and 1.5 
for tUrbulent boundary layer. 

2. Interference damping results 
should be used with caution since 
interference hardware was 
attached to sting. 

-
1. Magnitude of the sting inter-

ference effect was frequency 
dependent. 

2. Decreasing Ls/D from 3.5 to 1 
produced no effects on Cm. 

1. Wake geometries of sting-
supported models showed signif-
icant differences as compared to 
free-flight wake geometries. 

2. Interference damping results 
shou1d be used with caution since I 
interference hardware was attached 
to sting. I 

1. Discussion of effects of splitter I 
or wedge plates behind circular 
cylinders. 

1. Splitter-plate effects on body 
and base pressures were generally 
small. 
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14 

Trans-
sonic, 
Super-
sonic 

3.88 

6.8 

1.5 
to 
4 

.0.7 
to 

1.3 

0.9 
to 

20.2 

.0.28 
to 
10 

REL ~ 0.6 x 106 

RED ~ 3.9 x 1.06 Turbulent 

Laminar, 
TranSitional 

RED ~ 0.16 x 106 

to .0.41 x 106 

REL ~ 15 x 10~ 
to 45 x 10 

REL ~ .0.14 x 106 

to 1.2 x 106 
Laminar 

Laminar, 
RElft ~ 0.3 x 106 Transi tional, 

to 2.1 x 106 Turbulent 

-----_ .. _---

Appendix A 
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Blunt Sting 
5 . 6-de g Cone 

Nose-Cylinder Sting 

Del ta Wing, Sting 
Cone 

70-deg Cone Sting 

Ogive Flight 
Cylinder Tests 
with and with 
without Dummy 

Fins Stings 

Sting 
with 

Sharp and 
and wi thout 

Blunt Splitter 
Cones Plates, 

Free 
Flight 

Sharp Sting, 
and with 

Blunt and 
Cones without 
with Spli tter 
and Plates, 

without Free 
Bulbous Flight, 

Bases Transverse 
Rod 

1.2, PB 
4.2 

0 0 
to to PB 
4 .0.5 

3.1 .0.3 
to to Schlieren 

6.3 .0.6 Photographs 

5.8 .0.12 Static 
to Coefficients, 

0.5 PB 

2.4 0.6 PB 

PB 

C + C 1.2, m m. 
4.2 q a 

C
ma 

PB, 
.0 .0.314 Cm , 
to to a 
3.6 .0.471 Cm + C m. q a 

1. The addition of a splitter plate 
to the support strut behind the 
sting smoothed and reduced PB 
significantly. 

1. Summary of support interference 
problems at transonic and 
supersonic speeds. 

1. Ds/D- > 0.15 influenced base 
pressure by more than 4 percent. 

2. The base pressure was unaffected 
by sting length for Ls/D > 1.3. 

1. Results showed that short sting 
lengths have less support inter-
ference if transition occurs 
upstream of the model base. 

1. At M = 1.5 and 2 an increase in 
Ds decreased PB and increased the 
axial-force coefficient. No 
appreciable effect was found at 
M = 3 and 4. 

1. The sting reduced base suction 
by about 40 percent at subsonic-
transonic speeds but had no 
measurable effect for M > 1.15. 

1. A review of theoretical and 
experimental information about 
the effects of viscous inter-
actions and support interference. 

2. Comparison between ballistic 
range and wind tunnel data. 

--_ .. ---~----
1. Transverse rod interference 

occurs at all speeds for certain 
trim angles or pitch amplitudes . 

2. An analytical method of corrective 
wind tunnel dynamic support inter-
ference effects. 

3. Any attempt to simulate ablation 
increases the probability of 
dynamiC support interference. 
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Reynolds 
M Number 

0.6 RE/ft - 3.73 x 106 
to to 4.57 x 106 

1.0 

0.6 
to RE/ft ~ 3.5 x 106 

1.2 

0.6 
to RElft ~ 3.9 x 106 

1.4 to 5.1 x 106 

Low -
Sub-

sonic 

Boundary 
Layer Model 

- Winged 
Bodies 

of 
Revolution 

-- Symmetric 
Bombs 

Ogive 
Cylinder 

-- ·with 
and 

wi thout 
Boattails 

--- Cylinder 

Appendix A 
Concluded 

Model 
Support 

Sting, 
Strut 

Sting 

Ls/D 

--

5.1 
to 

12.3 

2 
Strut, to 
Sting 5 

Wall --
Mounted 

--

Ds/D 

-

0.31 
to 

0.92 

--

-

Measurements 

PB 

Static 
Coefficients 

PB 

Pressure 
Distribution 

Drag 

Findings 

1. The effect of a lower-fuselage, 
forward-swept strut is generally 
small near the strut-model inter-
section and negligible over the 
the rest of the model. 

1. The effect of the presence of a 
sting generally decreases with 
increasing Mach number. 

2. Rolling moment is practically insen-
sitive to the presence of a sting. 

1. The 45-deg swept strut gives the 
grea test decrease in base pressur.e 
interference for M > 0.99. 

2. Ls/D = 3 for lO-deg boattail. 
Ls/D = 5 for no boattail. 

1. Flow visualization of a cylinder 
in two-dimensional flow with a 
trail splitter plate and its 
application to strut-supported 
model interference at high angles 
of attack. 
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Hodels 

Nose-Cylinder 
wi thou t Boa t tail 

Nose-Cylinder 
with Boattail 

Slender Flat
Base Cones 

Mach 
Regime 

Subsonic 

Transonic 

Supersonic 

Hypersonic 

Subsonic 

Transonic 

Supersonic 

Hypersonic 

Subsonic
e 

Appendix B 
Suggested Sting Criteriaa 

Mach 
Number 

0.6 to 0.9 

0.6 to 1.4 

0.95 to 1.2 

1.5 to 

1.5 to 

1.5 to 

0.6 to 0.9 

0.6 to 1.4 

0.95 to 1.2 

1.5 to 

1.5 to 

1.5 to 

Heasurements 

C + C 
m m. 

q a 

PS 

PE, C
A 

PB, C
A 

PB, C
A 

PB, C
A 

CN' em 

CN' Cm 

C + C 
m m. 

q a 

PB, C
A 

CN' em 

+ C m m. 
q a 

PB, C
A 

CN' Cm 

+ C m m. 
q a 

PE, C
A 

+ C 
mq rna 

PB, C
A 

CN' Cm 

C + C 
m m. 

q a 

PE, C
A 

CN' C~ 

+ C 
m m. 

q a 

Boundary Layerb 

Unknown 

Unknown 

Unknown 

Laminar 

Turbulent 

Turbulent 

Laminar 

Turbulent 

Unknown 

Unknown 

Unknown 

Laminar 

Turbulent 

Laminar 

Turbulent 

Definitions for notes a through g are given on p. 144. 
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Critical Sting Length, 
L In 

cr 

No Data 

No Data 

No Data 

No Data 

to 

No Data 

L In < 3.3
d 

cr 

No Data 

No Data 

No Data 

No Data 

No Data 

No Data 

No Data 

No Data 

5 to 10
c 

L In < 3
d 

cr -

No Data 

No Data 

No Data 

No Data 

No Data 

No Data 

No Data 

No Data 
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Appendix B 
Continued 

Mach Mach 
b 

Critical Sting Length, 
Models Regime Number Measurements Boundary Layer L In 

cr 

Slender FIa t- Transonic 
e 

PB, C
A 

No Data 
Base Cones 

C
N

, C No Data 
m 

+ C No Data m m. 
q a 

Supersonic PB, C
A 

Laminar 

PB, C
A 

Turbulent 

PB, C
A 

Laminar 2.5 

PB, C
A 

Transitional 

PB, C
A 

Turbulent 2.5 

PH, C
A 

Laminar L In > 3£ 
cr 

PH, C
A 

Turbulent 1.5 

to C
N

, C Laminar 
m 

C
N

, C Transitional 
m 

to C
N

, C Turbulent 
m 

to C + C Laminar 
m m. 

q a 

C + C Transitional 
m m. 

q " 
to C + C Turbulent 

m m. 
q a 

In > 
£ 

Hypersonic PH, C
A 

Laminar L 3.3 
cr 

PB, C
A 

Transitional 

PB, C
A 

Turbulent 

14 PB, C
A 

Unknown L In > 4.2£ 
cr 

C
N

, C Laminar 
m 

C
N

, C Transi tional 
m 

C
N

, C Turbulent 
m 

C
N

, C Laminar 
m 

N' C Turbulent 
m 

C + C Laminar 
m m. 

q a 

C + C Transitional m m. 
q a 

C + C Turbulent 
m m. 

q a 

C + C Laminar 3.3
g 

m m. 
q a 

+ C Turbulent 2.5 m m. 
q a 

Slender Cones Subsonic PB, C
A

, C
N

, C m' C m + C No Data m. 
with Bulbous q a 

Bases 
Transonic rn, CA' C

N
, C

m
, C + C No Data 

m m. 
q a 

Supersonic PB, C
A

, C
N

, C 
m' C + C No Data m m. 

q " 
Hypersonic PB, C

A
, C

N
, C 

m' C + C No Data m m. 
q a 

Def ini tions for notes a through g are given on p. 144. 
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Models 

High-Drag 
Cones 

Wing 
Configurations 

Sliced-Base 
Configuration 

Mach 
Regime 

Subsonic 

transonic 

Supersonic 

Hypersonic 

Subsonic 

Transonic 

Supersonic 

HypersoniC 

Subsonic 

Transonic 

Supersonic 

Mach 
Number 

1. 6 to 3 

0.6 to 0.9 

Appendix B 
Continued 

Measurements 

PB, C
A 

CN' Cm 

C + C 
m m. 

q a 

PB, C
A 

eN' em 

C + C 
mq rna 

PB, C
A 

CN' Cm 

C + C m m. 
q a 

0.95 to 1.05 PB, C
A 

1. 1 to 1. 3 PB, C
A 

CN' Cm 

C + C 
ffiq rna 

PB, C
A 

eN' em 

+ C 
ffiq rna 

PB, C
A 

CN' Cm 

+ C 
ffiq rn&. 

PB, PS 

PB, PS 

CN' Cm 

C + C 
ffiq rna 

Definitions for notes a through g are given on p. 144 ~ 
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Boundary Layer
b 

Unknown 

Turbulent 

Turbulent 

Turbulent 

Turbulent 

Turbulent 

AEDC-TR-79-89 

Critical Sting Length, 
L /n cr 

No Data 

No Data 

No Data 

No Data 

No Data 

No Data 

No Data 

No Data 

No Data 

No Data 

No Data 

L /n > 5
f 

cr -

No Data 

No Data 

L /n > 5
f 

cr -

No Data 

No Data 

No Data 

No Data 

No Data 

No Data 

No Data 

No Data 

No Data 

No Data 

No Data 

No Data 

No Data 

No Data 

No Data 

No Data 
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Mach 
Hodels Regime 

Hach 
Number 

Appendix B 
Concluded 

Heasurements 
Critical Sting Length 

Boundary Layer L ID 
cr 

Sliced-Base Hypersonic 5 PB Turbulent L ID > 3.9d 

Configuration cr 

NOTES: 

a Criteria for C/. 

5 

8 

8 

8 

---

---

o for PB, C
m 

q 

PS 

PB, PS 

PB 

PS 

CN' Cm 

C + C 
m m. 

q C/. 

+ C 
m. CA· 

C/. 

b Boundary-layer condition generally at model base. 

c L ID strongly dependent on REL. 
cr 

Turbulent 1 

Laminar L ID < 3.9d 
cr 

Turbulent L ID < 3.9d 
cr 

Turbulent 1 

--- No Data 

--- No Data 

d Available data are insufficient to indicate specific critical sting lengths. 

Stings with effective sting lengths greater than the value shown are interference

free of length effects. 

e Test similar to those reported herein; tentatively scheduled for 1979 at H = 0.6 to 1.3. 

f Available data are insufficient to indicate specific critical sting lengths. 

Stings with effective sting lengths less then the value shown will have interference 

effects. 

g Frequency effects present: L ID 
cr 3.3 for RFP 0.0032 and L ID - 2.5 for RFP 

cr 0.0019. 
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A 

D 

DTI 

ITT 

ITW 

K 

L 

M or Moo 

OC 

P 

AEDC-TR-79-89 

NOMENCLATURE 

Reference area (based on model base diameter, D), 0.349 ft2 

Forebody axial-force coefficient, forebody axial force/Q . A 

Normal-force coefficient, normal force/Q . A 

Pitching-moment coefficient, pitching moment/Q • A . D 

Pitching-moment coefficient due to pitch velocity, a(Cm )/a(qD/2V), 
radian-1 

Pitching-moment coefficient due to angle of attack, aCm faa, radian- 1 

Pitching-moment coefficient due to rate of change of angle of attack, 
a(Cm )/a(aD/2V), radian- 1 

Reference length (model base diameter), 0.667 ft (all models) 

Effective sting diameter, in. (at model base, see Figs. 6, 7, 8, 14, and 16) 

Data Type Indicator: 1 = heat transfer, 2 = pressure 

Enthalpy based on tunnel stilling chamber total temperature, Btu/Ibm 

Enthalpy based on model wall temperature, Btu/Ibm 

Boundary-layer trip sphere diameter or the average height of Carborundum 

grit, in. 

Model length, in. 

Critical sting length, in. (for Ls < Ler , model data are affected) 

Effective sting length, in. (from model base to sting flare, see Figs. 6, 7, 8, 
14, and 16) 

Free-stream Mach number 

Boundary-layer trip sphere spacing, in. 

Oscillatory components 

Free-stream static pressure, psi 
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PB 

PN 

PS 

PT 

PI to P22 

P23 to P26 

Q 

q 

QDOT 

RAY 

RE/ft 

RED 

REL 

RFP 

RHO 

S 

SC 

ST 

T 

Model base pressure, psia 

Nth model pressure (surface or base pressure), psia 

Model surface pressure, psi a 

Tunnel stilling chamber pressure, psia 

Pressure model surface pressures, psia 

Pressure model base pressures, psia 

Free-stream dynamic pressure, pSI or psf 

Pitching velocity, radian/sec 

Heat-transfer rate, Btu/ft2-sec 

Reference line on pressure model (see Figs. 3a and 20) 

Free-stream Reynolds number per ft 

Free-stream Reynolds number based on reference length CD), 

RED = RE/ft . D 

Free-stream Reynolds number based on model length (L), 

REL = RE/ft . L 

Reduced frequency parameter, wD/2V, radian 

Free-stream density, Ibm/ft 3 

Model base radius, in. 

Model nose radius, in. 

Model surface distance (wetted distance) from nose to trip, in. 

Static components 

Stanton number based on tunnel stilling chamber temperature, TT; ST = 

QDOT /[ RHO . V . (ITT - ITW)] 

Free-stream static temperature, 0 R 
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TT 

V 

X 

a 

a 

f':,( ) 

e 

¢ 

w 

Tunnel stilling chamber temperature, oR 

Free-stream velocity, ft/sec 

Distance from model base (positive toward nose), in. 

Angle of attack, deg or radians 

Time rate of change of angle of attack, radian/sec 

Uncertainty of parameter designated within parenthesis 

Oscillation amplitude, deg 

Cone half-angle, deg 

Model roll angle, deg 

Oscillation frequency, radian/sec 
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